A beleza abstracta – Parte I

E8

Qual a origem da beleza? Ou melhor, qual a origem do enlevo que sentimos quando percepcionamos algo que definimos como belo? A simetria, a coerência e a simplicidade são alguns dos elementos que parecem compor a harmonia daquilo que genericamente sentimos ser belo. Somos atraídos pela beleza sem que a razão pareça ter um argumento que justifique esta valorização abstracta inadvertida. Encontramos esse encanto não só no mundo material, como também no mundo das ideias. Admiramos noções simples que têm o dom de elucidar conceitos complexos. Atrai-nos a magia aparente de uma ideia que parece transcender os limites da razão que a criou.

Em 1988, a revista Mathematical Intelligencer criou uma votação para os seus leitores elegerem os teoremas mais belos da Matemática [1]. Alguns deles já os referi noutros artigos, como a demonstração do π ser um número transcendental, bem como a da raiz quadrada de 2 ser um número irracional. Neste artigo vou descrever o top 5.

Continuar a ler

Anúncios

Leis de Conservação II

No último artigo, Leis de Conservação I, falei-vos da Lei da Conservação da Energia e a da Lei da Conservação do Momento Linear. Neste artigo irei falar da Lei da Conservação do Momento Angular e da Lei da Conservação da Carga.

Existem mais leis de conservação: conservação da carga de cor (é uma carga que está relacionada com a força forte, do mesmo modo que a carga eléctrica está relacionada com a força electromagnética) e a conservação do isospin fraco (na verdade é apenas a terceira componente deste número quântico é que é conservado, mas sem entrar em pormenores, trata-se de uma outra característica das partículas, desta vez relacionada com a força fraca). Existem ainda mais três leis de conservação/ simetria, que são de carácter mais “geral”: simetria CPT (neste caso, um qualquer sistema físico conserva as suas propriedades – diz-se invariante, se sofrer uma inversão simultânea da carga eléctrica, da paridade (define se a função de onda de uma partícula é par ou ímpar no espaço*) e do tempo; existem, porém, evidências que apontam no sentido de haver excepções à regra); covariância de Lorentz (trata-se de uma assunção da Teoria da Relatividade: qualquer lei física tem que ser independente do referencial inercial escolhido); e a conservação da probabilidade, a qual é descrita por uma equação de continuidade (pode ser aplicada, por exemplo, à dinâmica de fluídos, sendo que o fluído que “entra” é igual ao que “sai” (ver figura seguinte); é também a equação que explica a conservação local da carga eléctrica). Continuar a ler