O Fascínio dos Números – Parte III

18936069-3D-numbers-wallpaper-Stock-Photo

Na primeira parte falei-vos dos números naturais, inteiros, racionais, irracionais, transcendentais e reais. Na segunda parte abordei os números imaginários, os complexos, os transfinitos, e os primos (mais as suas “sub-famílias”).

Será que os matemáticos se ficaram por aqui? É claro que não!

Continuar a ler

Paradoxos da Razão – Parte III

image002

Um paradoxo é uma contradição, é como que uma falha lógica. Assim, como é que o pensamento racional poderá conduzir a paradoxos? A questão em si parece ser paradoxal, a menos que a razão nos pregue partidas.

Na parte I falei-vos dos paradoxos de Zeno, do paradoxo da roda de Aristóteles, e do problema da corda à volta da Terra. Na parte II abordei o Paradoxo de São Petersburgo, o Princípio da Casa de Pombos, e a Fita de Möbius.

Nesta terceira parte vou debruçar-me sobre o Paradoxo do Barbeiro, o Teorema do Macaco Infinito, o Paradoxo de Banach-Tarski, e o Paradoxo do Grande Hotel de Hilbert.

Continuar a ler